
NASA TTF-10, 256 

ADSORPTION BERAVIOR OF ORGANIC COMPOUNDS 

B. B. Damaskin 

$ z Uspekhi Khimii, Vol. 34, No. 10, pp. 1764-1779, 1965. 
Translation of "Zakonomernosti Adsorbtsii Organicheskikh Soyedineniy" . 

, 

- N 6 6  33766 ' 
I - - -  
m 

UCCESSION NUMBER) 

L 
> 33 "7"' (CODE1 

r 
(PAGES) - 

2 

(NASA CR OR r M x  OR AD NUMBER) 

GPO PRICE $ 

CFSTI PRICE(S) $ 

Hard copy (HC) 3 0-0 

Microfiche (MF) - &-2 
ff 653 July 65 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON D.C. AUGUST 1966 



NASA TTF-10,256 

ADSORPTION BEHAVIOR OF ORGANIC COMPOUNDS 

B. B. Damaskin 

An adsorption theory of organic compounds is 

presented which i s  primarily based on da ta  obtained 

f o r  a mercury e lec t rode  by measuring t h e  cr, 9- and C i  

$-curves. 

t he  majority of organic compounds reducing the  double 

It is found that adsorption on mercury of 

l aye r  capacitance conforms t o  the  isotherm equation 

of Frumkin. 

Among the  d i f f e r e n t  d i r e c t  and i n d i r e c t  methods f o r  studying t h e  /1764* 

adsorption of organic substances on e lec t rode  sur faces ,  the  methods which 

measure the  boundary stress (a) and the  d i f f e r e n t i a l  capacitance (C) as a 

function of t h e  e l ec t rode  po ten t i a l  ($1 have been employed most extensively.  

The overwhelming majority of these d a t a  have been obtained f o r  the  boundary 

of a mercury/water so lu t ion  w i t h  t h e  s m a l l  addi t ion  of organic compounds. 

I n  t h i s  connection, t he  adsorption theory of organic compounds which i s  pre- 

sen ted  below, i s  primarily based on experimental da ta  obtained f o r  a mercury 

e l ec t rode  by measuring t h e  0, 4- and C, $-curves. 

Commencing with the  s tud ie s  by Gouy (Ref. 1, 2) and Frumkin (Ref. 3, 4) ,  

the method which measures the  e l ec t rocap i l l a ry  curves has been widely employed 

* Note: Numbers i n  the  margin ind ica t e  pagination i n  the  o r i g i n a l  
fore ign  text. 



up t o  the  present t o  study adsorption on a mercury e lec t rode  of d i f f e r e n t  

organic compounds (Ref. 5 - 20). 

As may be seen from Figure 1, which w a s  taken from t h e  art icle by Gouy 

(Ref. l), the adsorption of an organic compound ( i n  t h i s  case, amyl alcohol) 

considerably decreases the mercury boundary stress. The m a x i m  decrease 
i n  

i n  cs occurs c lose  t o  t h e  zero charge po in t  (zcp) /an inorganic  e l e c t r o l y t e  

so lu t ion ,  and decreases wi th  an increase i n  the  negative o r  p o s i t i v e  charge 

of the surface.  I n  t h e  majority of cases, no decrease i n  the  boundary stress 

i s  observed when an organic substance i s  added, i f  there  is an adequate nega- 

tive, o r  p o s i t i v e  charge, and t h e  e l ec t rocap i l l a ry  curve with the  addi t ion  

coincides with the  u, +curve measured i n  a background so lu t ion  (Figure 1). 

According t o  t h e  adsorption equation of Gibbs, w e  have 

I 

(1) &=- RZTdlnc 

where I' and c are the  adsorption and concentration of the  organic substance. 

This means t h a t  f o r  l a rge  sur face  charges desorbtion of organic molecules 

from the  e lec t rode  sur face  occurs. Qual i ta t ive ly ,  t h i s  phenomenon i s  rela- 

t ed  t o  the  replacement of the  layer  of  organic molecules having a s m a l l  di- 

electric constant by the  l aye r  of water molecules, i n  which the d i e l e c t r i c  

constant i s  much la rger .  

Figure 2 shows the u, $-curves measured by Smirnov and Demchuk (Ref. 

21) i n  a 

over a wide p o t e n t i a l  range up t o  a charge of Na' ions which i s  accompanied 

by t h e  formation of s o d i m  amalgam. 

divergence of the  e l ec t rocap i l l a ry  curves a t  very negative po ten t i a l s  has 

t h e  same nature  as t h a t  close to  the mercury zcp, and i s  r e l a t e d  t o  the  

adsorption of amyl alcohol c lose  t o  t h e  sodium amalgam zcp. 

0.2 M aqueous so lu t ion  of N a I  with 0.1 M addi t ion  of n-CSH11OH 

I n  t h e  opinion of t he  authors, the 

, 
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Frumkin (Ref. 22) has developed a quan t i t a t ive  theory f o r  t he  influence 

of t he  e l e c t r i c  f i e l d  on the  adsorption of neu t r a l  molecules. 

Frumkin, when allowance is  made for t he  attractive fo rce  between ad- 

sorbed molecules, the  decrease i n  the  boundary stress (Aa) and the  ex ten t  

According t o  

/1765 

are re- t o  which the  sur face  is  covered ( 0  = r/I'J by an organic substance 

l a t e d  by the  following relationship: 

Au = - A[In (1 - 0) + 0091 

where A and a are constants, and A =  RTr,. The quant i ty  a is  a me 

t he  i n t e r a c t i o n  between adsorbed p a r t i c l e s  ( a t t r a c t i o n  constant). 

(2) 

su re  of 

I I 

0 -1p -2p -s/ 8 -bp -1p -13 
q.v(n. k. e .  ) p,V (n.k.e.) 

Figure 1 Figure 2 

E lec t rocap i l l a ry  Curves i n  the  Fol- 
lowing Solutions: 1- 1 N  Na2S04; 2- lowing Solutions: 1- 0.2 M N a I ;  2- 
1N Na2S04 + 0.1 M C5H11OH 

Elec t rocapi l la ry  Curves i n  the  Fol- 

0.2 M N a I  + 0.1 M n-CsH11OH 

(According t o  Data i n  [Ref. 11) (According t o  Data i n  [Ref. 211) 

We may readi ly  obta in  the  equation of t he  adsorption isotherm from 

equation (2) and Gibbs' equation (1): 

(3) 

where B i s  t h e  adsorption equilibrium constant which determines the  dependence 

of adsorption on the e lec t rode  poten t ia l .  Equation (3) has been ca l l ed  the  

3 
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Frumk-a isotherm. 

I n  order t o  determine the e x p l i c i t  dependence of B on $, Frumkin assumed 

t h a t  t h e  boundary between the  electrode and the  so lu t ion  may be regarded as 

two capacitors connected i n  p a r a l l e l ;  t he re  are only molecules of an organic 

substance between the  p l a t e s  of one of t h e  capacitors,  and the re  are only 

solvent molecules (water) between t h e  p l a t e s  of t h e  o ther  capacitor.  

case, the  e lec t rode  charge (E)  may be represented as follows: 

I n  this 

8 = 6 ( l  --e) + c'8 ((P-VN) ( 4 )  

4 
where E O = /  Cod$; Co and C' - t h e  capacitance of a double layer ,  respec t ive ly ,  

i n  t h e  case of 6 = 0 and 0 = 1; $ - t he  p o t e n t i a l  computed from t h e  zcp i n  

the  case of 6 = 0 and @N - t h e  zcp s h i f t  during t h e  t r a n s i t i o n  from 6 = 0 t o  

e = 1. 

0 

When equation (4) is  combined wi th  the  main e l e c t r o c a p i l l a r i t y  /1766 

equation 

(5) 
CI~Y = --tdv --RTTdln c 

i t  leads t o  the  following dependence of B on t h e  poten t ia l :  

9 
where E = 1 cod+, i.e., a decrease i n  u when t h e r e  is adsorption of only in- 

organic ions. 
0 

The u t i l i z a t i o n  of equations (6) and (3) makes i t  poss ib le  t o  compute 

t h e  dependence of t h e  coverage degree 0 on the  p o t e n t i a l  $. 

t i o n  (2), it  is  poss ib le  t o  f ind  the  decrease i n  the  boundary stress under 

t h e  influence of adsorption of organic molecules on the  e lec t rode  surface.  

Based on equa- 

4 



. 
Frumkin (Ref. 22) performed these  computations f o r  adsorption on mercury 

of tertiary -CgHllOH of a 1 N so lu t ion  of NaC1.  H e  found t h a t  t he re  w a s  

good agreement between t h e  calculated a, +curves and those measured experi- 

mentally. 

However, a more d e t a i l e d  comparison of t h e  computational and experimen- 

t a l  a,  +curves i n  these  experiments showed t h a t  t h e  bend on t h e  electroca- 

p i l l a r y  curves i s  more pronounced i n  t h e  case of E > 0 than would be expected 

from theory. This r e s u l t  w a s  explained i n  (Ref. 22) by a decrease in  t h e  

area of one adsorbed alcohol molecule with an increase  i n  8, which is equi- 

va len t  t o  t h e  parabol ic  dependence on the  p o t e n t i a l  of t h e  a t t r a c t i o n  cons- 

t a n t  a. 

1 
I -IS -1p -IS 

9.V tn.k.6.) 

Figure 3 

Curves S h d n g  t h e  Di f f e ren t i a l  Capacitance i n  a 1 N 
Solution of Na2S0~ and i n  a 1 N Solution of Na2SOh - .  
Saturated with-n-C8H170H (According t o  Data i n  [Ref. 
241) 

The theory advanced by Butler (Ref. 23) w a s  an attempt t o  explain 

the  e l e c t r o c a p i l l a r y  curves on the  bas i s  of t he  molecular proper t ies  of 

adsorbed substances - i n  pa r t i cu la r ,  taking i n t o  account t he  p o l a r i z a b i l i t y  

of organic molecules. However, i n  order t o  determine t h e  d ipole  moments 

5 



of adsorbed molecules, t h e  theory advanced by But le r  employed experimental 

da t a  on boundary stress. 

dependence of t he  organic substance adsorption on i t s  concentration i n  

so lu t ion ,  s ince  i t  w a s  based on the  v a l i d i t y  of Henry's l aw.  

I n  addition, t h i s  theory presented an inco r rec t  

Further development of t h e  theory f o r  adsorption of organic compounds 

may be  based on experimental d a t a  derived from measuring t h e  d i f f e r e n t i a l  

capacitance of  a mercury e lec t rode  i n  t h e  presence of organic addi t ions ,  

because the d i f f e r e n t i a l  capacitance is a much more s e n s i t i v e  function of 

the  change i n  the  double l aye r  s t r u c t u r e  than is boundary stress (Ref. 24) .  

Based on t h e  e l e c t r o c a p i l l a r y  d a t a  and taking i n t o  account the  Lippmann 

equation, w e  would expect a region of l o w  capacitance (on the  order of 

4 - 5 F.IF/&) on the  curves sharing the  d i f f e r e n t i a l  capacitance i n  t h e  

presence of organic substance additions. This region would be de l inea ted  

on both s i d e s  by desorption peaks. I n  a c t u a l i t y ,  as was  already shown by 

Proskurnin and Frumkin (Ref. 24) ,  i n  t h e  presence of n-octyl alcohol, t h e  

C ,  @-curves have t h e  ind ica ted  form (Figure 3). 

pacitance curves w a s  obtained subsequently by o the r  researchers.  

Thus, commencing with the  study by Proskurnin and Frumkin (Ref. 2 4 ) ,  t h e  

method which measures t h e  d i f f e r e n t i a l  capacitance has been widely employed 

f o r  studying adsorption on mercury of very d i f f e r e n t  organic substances 

(Ref. 25 - 44) .  

I 

A similar form f o r  t he  ca- 

11767 

However,  t he  quan t i t a t ive  u t i l i z a t i o n  of t h e  d a t a  obtained is  r e s t r i c -  

t e d  t o  the  region of maximum adsorption po ten t i a l s ,  where there  is  a decrease 

i n  capacitance on t h e  C, @-curve i n  the  presence of organic substances (Figure 

3), and where t h e  following cor rec t  r e l a t ionsh ip  holds between t h e  capacitance 

6 



. 
and the  degree of sur face  coverage: 

(7) c = c,(i - e) + ce 
This equation w a s  u t i l i z e d  i n  the  s tud ie s  (Ref. 3 4 ,  3 8 ,  4 2 )  i n  order 

t o  ca l cu la t e  t h e  adsorption isotherms of d i f f e r e n t  organic compounds on 

mercury. 

cn the cooprage degree, i n  t h e  case of a maximum adsorption po ten t i a l ,  i n  

order t o  develop an adsorption theory f o r  two organic substances simultane- 

ously on an e l ec t rode  sur face  (Ref. 4 5 ,  4 6 ) .  

Dobren'kov recent ly  employed the  dependence of  t he  capacitance 

I n  order t o  i n t e r p r e t  t h e  complete curve of t h e  d i f f e r e n t i a l  capacitance 

i n  the presence of an organic substance, one m u s t  select an independent elec- 

t r ic  var iab le  and a s p e c i f i c  equation f o r  t h e  adsorption isotherm. 

present discussion on these  problems (Ref. 47 - 49) compels us t o  &ell on 

these  problems i n  g rea t e r  d e t a i l .  

The 

1. Selec t ion  of E l e c t r i c  Variable 

When studying the  adsorption of organic substances on electrodes,  one 

may s e l e c t  e i t h e r  t he  e lec t rode  po ten t i a l  (Ref. 2 2 )  o r  i t s  charge (Ref. 47) 

as t h e  e l e c t r i c  var iab le .  

L e t  us f i r s t  assume t h a t  t he  experimental dependence of an organic 

substance adsorption r on i t s  volumetric concentration and p o t e n t i a l  can be 

w r i t t e n  as follows 

where B i s  a c e r t a i n  function of only $I and f(r) - t h e  function of only I'. 

Under these  conditions, it i s  advantageous t o  select the  p o t e n t i a l  as t h e  in- 

dependent electric var iab le ,  s ince  the  form of t h e  isotherm ( 8 )  w i l l  no t  de- 

pend on @ i n  dimensionless coordinates it follows from ( 8 )  t h a t  

7 
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where t h e  second equation follows from the  main e l e c t r o c a p i l l a r i t y  equation 

(5). In t eg ra t ing  (9), w e  find: 

where, just as previously, A = RTr,. 

I n  t h e  case of e = 1 and a given po ten t i a l ,  l e t  us designate t h e  charge 

by E., and we then have 

It follows from equations (10) and (11) t h a t  

D i f f e ren t i a t ing  equation (12) with respec t  t o  the  p o t e n t i a l  f o r  /1768 

w r i t i n g  t h e  adsorption isotherm 8 = const, we ob ta in  equation (7). Thus, 

i n  t h e  form of equation (8) and, consequently, s e l e c t i n g  the  e lec t rode  poten- 

t i a l  as t he  independent electric variable,  correspond t o  the  model of a 

double electric l aye r  which w a s  previously advanced by Frumkin (Ref. 22). 

If i t  is  assumed as the f i r s t  approximation t h a t  t h e  capacitance CO 

does not depend on 4, then it is apparent t h a t  EO = Co@, and w e  obtain t h e  

following from equation ( 4 )  i n  the case of E = 0 :  

?Ivb 
Q#==c, 

$-,+e (13) 

where 

case of 0 = 0 

equation (13), the dependence of (pE 

= 0 
i s  t h e  zcp value for given 0 ,  ca lcu la ted  from t h e  zcp i n  the  

As may b e  seen from - i.e., t he  adsorption p o t e n t i a l  jump. 

on e (or on r) i s  no t  l i n e a r  when 

8 
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! .  

t he  p o t e n t i a l  is  se l ec t ed  as the  e l e c t r i c  variable, and t h e  l a r g e r  t h e  

Q/C' r a t i o  the  g rea t e r  i t  deviates from a l i n e a r  dependence. 

Let us now assume t h a t  t h e  experimental d a t a  can be described by 

the  following type of equation 

where G i s  a c e r t a i n  function only of E and f(r) - t h e  function only of I?. 

I n  t h i s  case, it is  advantageous t o  s e l e c t  t he  e l ec t rode  charge as t h e  inde- 

pendent electric var iab le ,  s ince  t h e  form of the  isotherm (14) i n  dimension- 

less coordinates w i l l  no t  depend on E. It follows from equation (14) t h a t  

where the  second equation follows from the  main e l e c t r o c a p i l l a r i t y  equation 

w r i t t e n  i n  the  case of E. = const (Ref. 50). In t eg ra t ing  (15), w e  obtain 

where $0 i s  the  value of $ i n  t h e  case of 8 = 0,  corresponding t o  the  given 

charge E. 

I n  t h e  case of given E and 0 = 1, i f  we designate t h e  po ten t i a l  by $*, 

w e  then have 

It follows from equations (16) and (17) t h a t  

D i f f e r e n t i a t i n g  (18) with respect t o  E i n  t h e  case of 9 = const, w e  ob ta in  

i 1-e e 
--I-+- c- c, c 

9 
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Thus, wri t ing  the  adsorption isotherm i n  t h e  form of equation (14) and, 

consequently, s e l ec t ing  the  e lec t rode  charge as t h e  independent e l e c t r i c  

va r i ab le  correspond t o  t h e  consecutive combination of two capac i tors  with 

the  capacitances C o / ( l  - 9) and C' /9 .  It is  d i f f i c u l t  f o r  us t o  advance a 

physical i n t e r p r e t a t i o n  of t h i s  model. 

On the  o ther  hand, i f  t h e  Capacitances Co and C' do no t  depend on ~ , /1769  

then it i s  apparent that $0 =- E / C O  and 4' = E/C + +. In t h i s  case, 

equation (18) may be rewr i t ten  i n  the  following form: 

Assuming t h a t  E = 0 i n  equation (20), w e  ob ta in  the  l i n e a r  dependence of t h e  

adsorption p o t e n t i a l  jump on 8 ( o r  on r ) :  

Thus, the  dependence of adsorption p o t e n t i a l  jumps on r enables us t o  de- 

termine whether condition (8) o r  (14) is  more advantageous, and consequently, 

which of t he  electric var iab les  (4  o r  E) is  more advantageous, when studying 

the  adsorption of an organic substance at the phase boundary. 

Figure 4 shows the dependence of + E  - - on r i n  t h e  case of n-CqHgCOOH 

and n-CgH11NH2 adsorption at t h e  mercury-solution and so lu t ion-a i r  boundaries 

(Ref. 51). 

r a t  the  mercury-solution boundary is  independent of t h e  background concentra- 

As may be  seen from Figure 4, t he  r e l a t ionsh ip  between $, = and 

t i o n  and c lose ly  coincides with equation (13). However, i t  deviates sharply 

from the  r e c t i l i n e a r  dependence predicted by equation (21). 

this dependance approximately follows equation (21) at the solution- 

A t  the  same t i m e ,  

10 
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r.1010, mole/cm2 

Figure 4. 

Dependence of Adsorption Potent ia l  Jump on Adsorption of Organic 
Substance: a - Adsorption of n-C4HgCOOH: 1- A t  t he  Solution- 
Air Boundary, 0.01 N H2SO4; 2 and 3- A t  t he  Mercury-Solution 
Boundary (2- 0.01 N H2SO4 Background; 3- 1 N Na2S04 + 0.01 N 
H2SO4 Background); Dashed Line - Computed According t o  Equa- 
t i o n  (13) i n  the C a s e  of +N = 0 . 2  V, rm = 5-10-10 M / m 2  and 
Q/C' = 5. 
tion-Air Boundary (1- 0.05 N KOH Background; 2- 1 N  Na2S04 
+ 0.05 N KOH Background); 3 and 4- A t  t he  Boundary of the 
Mercury-Solution (3- 0.05 N KOH Background; 4- 1 N NazSO4 
+ 0.05 N KOH Background); Dashed Line - Computed According t o  
Equation (13) i n  t h e  Case of $N = 0 . 4  V ,  rm = 5-10-10 M/c& 
and Co/C '  = 5. 

b- Adsorption of n-C5H11NHz; 1 and 2- On t h e  Solu- 

a i r  boundary*. We obtained s imi la r  r e s u l t s  a l s o  i n  t h e  case of 11770 

adsorption a t  both n-C3H70H and n-CqHgOH boundaries. 

It follows from t h e  r e s u l t s  obtained t h a t ,  when studying t h e  ad- 

so rp t ion  of organic compounds a t  the mercury-solution boundary, the  

e l ec t rode  p o t e n t i a l  must be se lec ted ,  and not  i t s  charge, as the electric 

va r i ab le ,  based both on a physical i n t e r p r e t a t i o n  of t h e  double l a y e r  

- r from a r e c t i l i n e a r  de- 
C ' O  

* Cer ta in  deviations of t h e  dependence 4 
pendence i n  the  case of t he  so lu t ion-a l r  boundary may be r e l a t e d  t o  a 
change i n  t h e  o r i en ta t ion  of the adsorbed molecules with an increase i n  

11 
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model, and based on t h e  experimental dependence of the adsorption po ten t i a l  

jumps on t h e  magnitude of the  adsorption. 

2. Selection of Adsorption Isotherm 

Since the  experimental isotherms f o r  the  adsorption of organic com- 

pounds may have both the  form of a logarithmic curve, as w e l l  as a charac- 

L _  L~:ZLSLIC .I-&? 

i s  se l ec t ed  it i s  only meaningful t o  examine those equations which can convey 

d i f f e r e n t  forms of t h e  experimental isotherms as a function of a c e r t a i n  

value of a ( a t t r a c t i o n  constant) .  The following equations of adsorbed iso- 

therms s a t i s f y  t h i s  condition: 

~ - ~ k , ~ ~ ~ d  for-m ( F ~ ~ - ~ ~ ~  5 ; ,  --a-- ~ 1 -  - W I I e l l  L l l t :  e ~ U r i L l u r 1  of the adso-i'ied isahem _ _ _ _ _  L: __ 

1)  the  Frunikin isotherm - equation (3); 

2) D e  Bur isotherm (Ref. 52): 

3) Parsons isotherm (Ref. 47): 

4) generalized equation of the Frumkin isotherm: 

obtained by the  author (Ref. 53), which takes i n t o  account both t h e  i n t e r -  

ac t ion  between adsorbed molecules o f  an organic substance (by t h e  quantity a) 

and t h e  displacement of n solvent molecules (water) by one adsorbed p a r t i c l e .  

I n  addi t ion  t o  t h e  t h e o r e t i c a l  b a s i s  f o r  one o r  another type of adsorp- 

t i o n  isotherm equation (Ref. 47, 48), criteria having an experimental na ture  

12 
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Figure 5 

Adsorption Isotherms on Mercury: 

1- Tr ie thyl  Ammonium Cations; 

2- Ter t i a ry  Amyl Alcohol (Accor- 
ding t o  Data i n  [Ref. 42, 431) .  

are of dec is ive  importance. Such cr i ter ia  w e r e  advanced by Parsons (Ref. 

47) and Tedopadze (Ref. 5 4 ) .  However, as w a s  shown i n  (Ref. 5 5 ) ,  they do 

not enable us t o  choose between the four  equations of adsorbed isotherms 

which w e  have advanced. In t h i s  connection, l e t  us inves t iga t e  c r i t e r i a  

which make it poss ib le  t o  perform t h i s  s e l ec t ion .  

As may be r ead i ly  seen, a l l  the  equations w e  have described have the  

following form: 

Bc = F(9)eXp(-2a9) 
( 2 5 )  

where F(8) is  a c e r t a i n  function of 0 which is  independent of a. 

t h e  logarithm of (25) and then d i f f e r e n t i a t i n g  with respect t o  0 i n  t h e  case 

Taking /I771 

of I#I = const, we ob ta in  

13  



. 

As the  ana lys i s  shows, f o r  a ce r t a in  value of 0 = e*, determined from 

the  condition 

the dependence of ( a h  c/a8) 

i s  caused only by the  function F(8), and does not  depend on the  a t t r a c t i o n  

constant a. 

on 8 p a s s e s  through a minimum, whose pos i t i on  4 

As was shown i n  (Ref. 55), the  values of 8* f o r  equations (3) ,  (22), (23) 

and (24 )  are,  respectively: 0.500; 0.333; 0.215 and 1/(1 + &. 

pos i t i on  of t h e  minimum on t h e  experimental curves showing the  dependence of 

( a h  c/ae)$ on 8 may serve as a convenient c r i t e r i o n  i n  se l ec t ing  one of t he  

four described isotherms. 

of D e  Bur (22) is  p r a c t i c a l l y  ind is t inguishable  from equation (24) i n  t h e  

case of n = 4. 

Thus, t he  

When th i s  method i s  employed, only the  equation 

$*  I n  order t o  obta in  the  experimental curves of t he  dependence (a ln  c/a8) 

t he  procedure i s  as follows. F i r s t ,  employing t h e  capacitance value at the  

minimum of the  C, $-curves, with the a i d  of equation (7) which is v a l i d ,  as 

w e  have seen, for any isotherm such as ( 8 )  o r  (25), we may compile the  ad- 

sorp t ion  isotherm 8 - c. Since 

may be found according t o  t h e  slope of t h i s  isotherm f o r  d i f f e r e n t  8, and 

the  (a ln  c/ae) - 8 curve may be compiled. 

= -  dc the  q u a n t i t i e s  (a ln  c/a8) + d In c 
de cod8 ' 

The c h a r a c t e r i s t i c  curves obtained f o r  t he  case of adsorption of analine,  

normal amylamine, and t e r t i a r y  amyl alcohol on a mercury electrode, are shown 

i n  Figure 6. 

responds t o  8* M 0.5, and consequently, adsorption of these  compounds conforms 

t o  the  Frumkin isotherm (3). 

As may be seen from Figure 6, t h e  minimum on these  curves cor- 

Analogous curves showing the  dependence of 

on 8 were a l s o  obtained f o r  normal propyl alcohol, normal and 

14 



iso-amyl alcohols,  isoamylamine, cations of tetrabulammonia and phenol. 

The experimental values of 8* range between 0.45 and 0.55 f o r  a l l  of these  

compounds (Ref. 55). 

Figure 6 

Dependence of (a ln  c/a0)+ on 0 ,  Obtained from t h e  
Experimental Adsorption Isotherms: 

1- Analine; 2- n-C5H11NH2; 3- Tertiary C5H11OH. 

Thus, adsorption on mercury of t h e  majority of organic compounds reducing 

t h e  double l aye r  capacitance conforms t o  t h e  isotherm equation of Frumkin (3). 

Dobren'kov and Golovin (Ref. 56) have recent ly  shown t h a t  adsorption of di-  

butylsulfonnaphthaline and isoamyl alcohol on a cadmium e lec t rode  a l s o  complies 

wi th  t h i s  equation*. /1772 Therefore, the isotherm equation of Frumkin (3) 

* The c lose  agreement between equation (3) and the  experimental da t a  ind ica t e s  
t h a t  i n  the  more general  equation ( 2 4 )  n = 1, and, consequently, a group of 
several water molecules occupies one adsorption loca t ion  on the  e lec t rode  sur- 
f ace  (Ref. 53). When allowance is  made f o r  t h e  s i g n i f i c a n t  attractive fo rce  
between the  H20  molecules adsorbed on mercury (Ref. 57 - 5 9 ) ,  t h i s  r e s u l t  can 
be  explained by t h e  f a c t  t h a t  t he  work required t o  t r a n s f e r  t h i s  group of 
molecules, taken as a whole, from t h e  sur face  i n t o  the  volume w i l l  be less 
than the  t o t a l  work required t o  t r a n s f e r  each molecule separa te ly .  

15 



may be  preferably employed as the  bas i s  f o r  a theory of d i f f e r e n t i a l  capaci- 

tance curves i n  t h e  presence of organic substances. 

3 .  Quan t i t a t ive  Theory of D i f f e ren t i a l  Capacitance Curves 
with the  Addition of Organic Substances 

The f a c t  t h a t  t h e  experimental da t a  ind ica t e  t h a t  it i s  more advantageous 

t o  select t h e  e lec t rode  p o t e n t i a l  as t he  electric var iab le ,  and t o  select the 

Frumkin equation ( 3 )  as t h e  adsorption isotherm, compels us t o  reject t h e  

t h e o r e t i c a l  re la t ionships  advanced i n  (Ref. 4 2 ,  4 3 ,  4 7 ) .  This a l s o  compels 

us t o  reject t h e  theory of Devanathan (Ref. 60) and Bockris, Devanthan, and 

Mi l l e r  (Ref. 61), p a r t i c u l a r l y  due t o  the  f a c t  t h a t  t h e  last two theor ies  have 

seve ra l  s i g n i f i c a n t  drawbacks which w e r e  inves t iga ted  i n  d e t a i l  i n  (Ref. 62). 

I f  t h e  p o t e n t i a l  i s  se l ec t ed  as t he  independent electric var iab le ,  under 

t h e  condition t h a t  t he  adsorption of an organic substance on t h e  e lec t rode  

sur face  i s  not  complicated by t h e  formation of polylayers o r  micellar fi lms, 

t he  sur face  charge is  a function of only the  e lec t rode  p o t e n t i a l  and the  de- 

gree of coverage: 

8 = 8 (0.0) 

Thus, t h e  general expression f o r  t h e  d i f f e r e n t i a l  capacitance can be 

w r i t t e n  as f o l l m s  

. *  , 

The q u a n t i t i e s  (a), and (g) i n  t h i s  equation can be  immediately found . 
from equation ( 4 ) :  

16 



I n  order t o  determine the  der iva t ive  d6/d4, l e t  us employ the  isotherm 

equation (3). Taking the  logarithm of t h i s  equation, and then d i f f e r e n t i a t i n g  

with respect t o  4, a f t e r  a lgebra ic  transformations w e  ob ta in  

It follows from equation (6) t h a t  

d b i  %+c(%--oj 
dQ A 

-iiL- 

and the  r e f  o re 

(33) 

f 1773 

(34) 

Subs t i t u t ing  the  values of t h e  derivatives from equations (30), (311, and 

(34) i n  equation (29), w e  ob ta in  t h e  f i n a l  expression f o r  t he  d i f f e r e n t i a l  

capacitance when the re  i s  an organic substance: 

This equation w a s  f i r s t  obtained i n  t h e  study by Hansen and h i s  coworkers 

(Ref. 28). 

As has already been indicated above, t h e  u t i l i z a t i o n  of equations (3) 

and (6) makes it poss ib le  t o  compute the  dependence of 6 on 4 f o r  a given 

organic substance concentration. Knowing t h i s  dependence, f o r  t he  known 

constants C ' ,  A, a and C$N, w e  may employ equation (35) t o  ca l cu la t e  the 

t o t a l  curve f o r  t h e  d i f f e r e n t i a l  capacitance i n  t h e  presence of an organic 

substance. 

The computations performed by Hansen and h i s  coworkers (Ref. 28), as 

w e l l  as our computations (Ref .  63), show t h a t  - i n  s p i t e  of t he  q u a l i t a t i v e  

17 



agreement between the  computed and experimental C, 4-curves - t he re  i s  q u i t e  

a quan t i t a t ive  divergence between them. As an analys is  has shown, t h i s  diver- 

gence po in t s  t o  a change with t h e  po ten t i a l  of t he  a t t r a c t i o n  constant included 

i n  t h e  isotherm equation of Frumkin (3) .  

vanced by Frumkin (Ref. 22) ,  f o r  the  majority of organic compounds, t he re  is 

I n  con t r a s t  t o  t he  assumption ad- 

a Ihesr dependence of a on 4, and not a parabol ic  dependence. 

Thus, t he  development of a theory on the  assumption of any a r b i t r a r y  de- 

pendence a = a ( $ )  i s  of grea t  i n t e r e s t .  

I n  t h i s  case, taking the  logarithm of equation (3) with subsequent d i f -  

f e r e n t i a t i o n  with respect t o  the  po ten t i a l  y i e l d s  the  following, a f t e r  alge- 

b r a i c  transformations, ins tead  of equation (32) : 

A t  t h e  same t i m e ,  d i f f e r e n t i a t i o n  with respec t  t o  41 i n  t h e  case of 8 = const 

y ie lds :  

Taking i n t o  account t he  second equal i ty  i n  equation ( 9 ) ,  w e  obtain 

In t eg ra t ing  t h i s  equation and taking the  f a c t  i n t o  account t h a t  t he  integra- 

t i o n  constant equals E O ,  w e  obtain 

S ince  E = E *  = C'(4 - $IN) i n  the  case of 8 = 1, w e  have the  following from 

equation (39) 

18 



I -  

d h B  %+chN-V) d a  -- 
( 4 0 )  

-9- 

d? * A 0 1  

In tegra t ion  of t h i s  equation from 0 t o  4 with subsequent involution 11774 

y i e l d s  

where an is the value of a in t h e  case of $ = 0. 

Equation ( 4 1 )  r e f l e c t s  t h e  dependence of t h e  adsorption equilibrium 

constant on t h e  p o t e n t i a l  i n  t he  case of any a r b i t r a r y  dependence of a on 

$. 

t i o n  (6). 

As may be r ead i ly  seen, i n  the  case of a = const it changes i n t o  equa- 

Subs t i t u t ing  equation (40)  i n  ( 3 9 ) ,  w e  obta in  the  equation f o r  t he  

e lec t rode  charge i n  the  general case, when a = a($): 

As would be expected, equation (42) changes i n t o  equation ( 4 )  i n  t h e  case 

of a = const. 

F ina l ly ,  l e t  us f ind  the  general expression f o r  t he  d i f f e r e n t i a l  

capacitance i n  t h e  presence of an organic substance under the  condition 

a = a($). It follows from equation ( 4 2 )  t h a t  

Subs t i t u t ing  equation (40)  i n  ( 3 6 ) ,  we f ind  

i e(i-0) d e  ’ do - =’- [ %-- c (q- + A - (i - 2 4  -. dQ dQ A i-ae(1-e) 

Subs t i t u t ing  t h e  derivatives from equations (431 , (44)  

(45 1 

and (45)  i n  
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equation (291, w e  obta in  the  f i n a l  expression f o r  t h e  d i f f e r e n t i a l  capaci- 

tance: 

In the case of a = cazst, equstion (46) changes i n t o  t h e  corresponding 

equation (35). 

W e  previously obtained the  expressions f o r  t he  adsorption equilibrium 

constant B, the  e lec t rode  charge E,  and the  d i f f e r e n t i a l  capacitance C, 

under the  condition t h a t  t h e  a t t r a c t i o n  constant i s  a l i n e a r  function of 

t he  e lec t rode  poten t ia l :  

a = a , + k  (47) 

Allowance i s  made f o r  t h e  dependence of a on 9 i n  t h e  expressions f o r  B ,  E 

and C by introducing a c e r t a i n  new constant: 

The expressions (41), (42) and (46) obtained i n  t h i s  study have f1775 

no r e s t r i c t i o n s  imposed by condition (47), and are v a l i d  f o r  any a r b i t r a r y  

dependence of the  a t t r a c t i o n  constant on the  e lec t rode  po ten t i a l .  

Since the  observed dependence of t he  a t t r a c t i o n  constant on the  poten- 

t i a l  f o r  t h e  majority of compounds s tudied ,  s a t i s f i e s  condition (47), the  

formulas obtained i n  (Ref. 64) provide a good agreement between t h e  computed 

and experimental C, $-curves (Ref. 63, 65 - 68). Figure 7 i l l u s t r a t e s  t h i s  

r e s u l t  with an example of adsorption on mercury of a normal valeric ac id  

(Ref. 68). W e  a l so  observed good agreement between ca lcu la t ions  and experi- 

ments i n  t h e  case of adsorption on mercury of n-C3H70H; n-CqHgOH; n-C5H11OH; 
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. 
i-C5H11OH; t e r t i a r y -  -C5H11OH; n-C4HgNH2; n-CgH11NH2; i-C5H11NH2; and 

C2H5 - CO - C2H5. 

I n  the  case of analine (Ref. 69) and a l s o  pyr id ine  (Ref. 70) adsorp- 

t i o n  on mercury, t he  computed and experimental C, @-curves coincide only 

i n  t h e  region of negative sur face  charges (see Figure 8). Due t o  a-electron 

i n t e r a c t i o n  between ana l ine  o r  pyridine molecules having pos i t i ve  charges on 

the su r face  of mercury, with the  change from E < 0 t o  E > 0 t h e i r  reorienta- 

t i o n  occurs, which is  accompanied by p a r t i a l  desorbtion. 

on t h e  Cy  rj-curves i n  t h e  presence of analine o r  pyridine cont r ibu te  t o  t h i s  

process, and not  t o  the  t o t a l  desorbtion of organic substance molecules from 

t h e  e l ec t rode  surface.  It is  c l ea r  t h a t  under these  conditions f o r  E > 0 

the  t h e o r e t i c a l  C, +-curves, which do not  take  i n t o  accomt  t h e  ind ica ted  

anomalies i n  t h e  adsorption of an organic substance, cannot present t h e  

p a t t e r n  of t he  experimental curves f o r  d i f f e r e n t i a l  capacitance. 

The anode m a x i m a  

F ina l ly ,  i n  the  case of adsorption of phenol on mercury (Ref. 71) t he  

p lanar  d i s t r i b u t i o n  of molecules, which i s  r e l a t e d  t o  the  s t rong  a-electron 

i n t e r a c t i o n ,  i s  c h a r a c t e r i s t i c  f o r  a l l  of t he  p o t e n t i a l  regions of i t s  ad- 

sorp t ion .  I n  t h i s  case, t h e  constants included i n  t h e  equation f o r  B(41) 

and f o r  t h e  d i f f e r e n t i a l  capacitance (46) charac te r ize  t h e  planar configura- 

t i o n  of phenol molecules i n  an adsorbed state, s o  t h a t  t h e  computed and ex- 

perimental Cy +curves coincide i n  t h e  e n t i r e  p o t e n t i a l  region (Figure 9). 

However, t he  influence of a-electron in t e rac t ion  i s  manifested i n  t h e  f a c t  

t h a t  t he  agreement between calculations and experiments i s  much worse i n  

t h e  case of phenol than it is  i n  t h e  case of adsorption of a l i p h a t i c  com- 

pounds (see Figure 7). 
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. 

Figure 7. 

Curves f o r  D i f f e r e n t i a l  Capacitance i n  a 0.05 N Solution 
of Na2S04 wi th  Additions of n-C4HgCOOH i n  t h e  Following 
Concentrat ions 

1- 0; 2- 0.05; 3- 0.08 and 4- 0.12 M. 

The Sol id  Lines - Experimental Data f o r  4OOcps; Dots and 
Dashes - Calculations. 

11776 
I n  addi t ion  t o  a quan t i t a t ive  i n t e r p r e t a t i o n  of the  curves f o r  d i f fe ren-  

t i a l  capacitance i n  t h e  presence of an organic substance, equations (3 ) ,  (41) 

and (46) enable us t o  study ce r t a in  general pa t t e rns  of equilibrium (i.e., 

ex t rapola ted  t o  a zero frequency) and a l s o  non-equilibrium C, $-curves - par- 

t i c u l a r l y ,  t h e  dependence 

he ighth  of these  peaks on 

of the  peak p o t e n t i a l s  on the  C, $-curves and the  

the organic substance concentration. A study of 
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Figure 8. 

Curves f o r  t he  D i f f e r e n t i a l  Capaci- 
tance i n  a 0.1 N Solution of KC1 
(Dashed Line) and with t h e  0.1 M 
Addition of Analine: 

1- Experimental Data; 2- Compu- 
t e d  Curve. 

Figure 9. 

.e.) 

Curves f o r  t h e  D i f f e r e n t i a l  Ca- 
pacitance i n  a 1 N Solution of 
Na2S04 (Dashed Line) and with a 
0.05 M Addition of Phenol: 

1- Experimental Data; 2- Compu- 
t a t i o n a l  Curve. 

these  dependences i s  of g r e a t  importance, s ince  they make it poss ib le  t o  

develop methods f o r  determining the main constants included i n  equations (41) 

and (46), as w e l l  as the dependence of a on (I according to experimental 

curves f o r  t he  d i f f e r e n t i a l  capacitance. Damaskin and Tedoradze (Ref. 72 - 
76) have recent ly  s tud ied  the  problems connected wi th  e s t ab l i sh ing  those 

general  pa t t e rns  which are of independent s c i e n t i f i c  i n t e r e s t .  

I would l i k e  t o  take  t h i s  opportunity t o  express my deep appreciation 

t o  A. N. Frumkin f o r  h i s  constant a t t e n t i o n  t o  t h i s  study and f o r  discussing 

t h e  r e s u l t s  obtained. 
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